126 research outputs found

    FedSEAL: Semi-Supervised Federated Learning with Self-Ensemble Learning and Negative Learning

    Full text link
    Federated learning (FL), a popular decentralized and privacy-preserving machine learning (FL) framework, has received extensive research attention in recent years. The majority of existing works focus on supervised learning (SL) problems where it is assumed that clients carry labeled datasets while the server has no data. However, in realistic scenarios, clients are often unable to label their data due to the lack of expertise and motivation while the server may host a small amount of labeled data. How to reasonably utilize the server labeled data and the clients' unlabeled data is thus of paramount practical importance. In this paper, we propose a new FL algorithm, called FedSEAL, to solve this Semi-Supervised Federated Learning (SSFL) problem. Our algorithm utilizes self-ensemble learning and complementary negative learning to enhance both the accuracy and the efficiency of clients' unsupervised learning on unlabeled data, and orchestrates the model training on both the server side and the clients' side. Our experimental results on Fashion-MNIST and CIFAR10 datasets in the SSFL setting validate the effectiveness of our method, which outperforms the state-of-the-art SSFL methods by a large margin.Comment: 15 pages, 7 figure

    On the Expected Discounted Penalty Function for the Classical Risk Model with Potentially Delayed Claims and Random Incomes

    Get PDF
    We focus on the expected discounted penalty function of a compound Poisson risk model with random incomes and potentially delayed claims. It is assumed that each main claim will produce a byclaim with a certain probability and the occurrence of the byclaim may be delayed depending on associated main claim amount. In addition, the premium number process is assumed as a Poisson process. We derive the integral equation satisfied by the expected discounted penalty function. Given that the premium size is exponentially distributed, the explicit expression for the Laplace transform of the expected discounted penalty function is derived. Finally, for the exponential claim sizes, we present the explicit formula for the expected discounted penalty function

    Loghub: A Large Collection of System Log Datasets towards Automated Log Analytics

    Full text link
    Logs have been widely adopted in software system development and maintenance because of the rich system runtime information they contain. In recent years, the increase of software size and complexity leads to the rapid growth of the volume of logs. To handle these large volumes of logs efficiently and effectively, a line of research focuses on intelligent log analytics powered by AI (artificial intelligence) techniques. However, only a small fraction of these techniques have reached successful deployment in industry because of the lack of public log datasets and necessary benchmarking upon them. To fill this significant gap between academia and industry and also facilitate more research on AI-powered log analytics, we have collected and organized loghub, a large collection of log datasets. In particular, loghub provides 17 real-world log datasets collected from a wide range of systems, including distributed systems, supercomputers, operating systems, mobile systems, server applications, and standalone software. In this paper, we summarize the statistics of these datasets, introduce some practical log usage scenarios, and present a case study on anomaly detection to demonstrate how loghub facilitates the research and practice in this field. Up to the time of this paper writing, loghub datasets have been downloaded over 15,000 times by more than 380 organizations from both industry and academia.Comment: Dateset available at https://zenodo.org/record/322717

    Co-evolving Vector Quantization for ID-based Recommendation

    Full text link
    Category information plays a crucial role in enhancing the quality and personalization of recommendations. Nevertheless, the availability of item category information is not consistently present, particularly in the context of ID-based recommendations. In this work, we propose an alternative approach to automatically learn and generate entity (i.e., user and item) categorical information at different levels of granularity, specifically for ID-based recommendation. Specifically, we devise a co-evolving vector quantization framework, namely COVE, which enables the simultaneous learning and refinement of code representation and entity embedding in an end-to-end manner, starting from the randomly initialized states. With its high adaptability, COVE can be easily integrated into existing recommendation models. We validate the effectiveness of COVE on various recommendation tasks including list completion, collaborative filtering, and click-through rate prediction, across different recommendation models. We will publish the code and data for other researchers to reproduce our work

    FinalMLP: An Enhanced Two-Stream MLP Model for CTR Prediction

    Full text link
    Click-through rate (CTR) prediction is one of the fundamental tasks for online advertising and recommendation. While multi-layer perceptron (MLP) serves as a core component in many deep CTR prediction models, it has been widely recognized that applying a vanilla MLP network alone is inefficient in learning multiplicative feature interactions. As such, many two-stream interaction models (e.g., DeepFM and DCN) have been proposed by integrating an MLP network with another dedicated network for enhanced CTR prediction. As the MLP stream learns feature interactions implicitly, existing research focuses mainly on enhancing explicit feature interactions in the complementary stream. In contrast, our empirical study shows that a well-tuned two-stream MLP model that simply combines two MLPs can even achieve surprisingly good performance, which has never been reported before by existing work. Based on this observation, we further propose feature gating and interaction aggregation layers that can be easily plugged to make an enhanced two-stream MLP model, FinalMLP. In this way, it not only enables differentiated feature inputs but also effectively fuses stream-level interactions across two streams. Our evaluation results on four open benchmark datasets as well as an online A/B test in our industrial system show that FinalMLP achieves better performance than many sophisticated two-stream CTR models. Our source code will be available at MindSpore/models.Comment: Accepted by AAAI 2023. Code available at https://xpai.github.io/FinalML

    ReLoop2: Building Self-Adaptive Recommendation Models via Responsive Error Compensation Loop

    Full text link
    Industrial recommender systems face the challenge of operating in non-stationary environments, where data distribution shifts arise from evolving user behaviors over time. To tackle this challenge, a common approach is to periodically re-train or incrementally update deployed deep models with newly observed data, resulting in a continual training process. However, the conventional learning paradigm of neural networks relies on iterative gradient-based updates with a small learning rate, making it slow for large recommendation models to adapt. In this paper, we introduce ReLoop2, a self-correcting learning loop that facilitates fast model adaptation in online recommender systems through responsive error compensation. Inspired by the slow-fast complementary learning system observed in human brains, we propose an error memory module that directly stores error samples from incoming data streams. These stored samples are subsequently leveraged to compensate for model prediction errors during testing, particularly under distribution shifts. The error memory module is designed with fast access capabilities and undergoes continual refreshing with newly observed data samples during the model serving phase to support fast model adaptation. We evaluate the effectiveness of ReLoop2 on three open benchmark datasets as well as a real-world production dataset. The results demonstrate the potential of ReLoop2 in enhancing the responsiveness and adaptiveness of recommender systems operating in non-stationary environments.Comment: Accepted by KDD 2023. See the project page at https://xpai.github.io/ReLoo
    • …
    corecore